泵车价格合理吗?泵车适合什么场合使用?,泵车多少米的比较划算

电气百科:接地变压器、浮头式换热器、盾构机、混凝土输送泵车

电气百科:接地变压器、浮头式换热器、容重、菲涅尔透镜、盾构机、混凝土输送泵车

电气百科:接地变压器


接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。

接地变压器的作用是为中性点不接地的系统提供一个人为的中性点,便于采用消弧线圈或小电阻的接地方式,以减小配电网发生接地短路故障时的对地电容电流大小,提高配电系统的供电可靠性。

使用现状

使用背景

电力系统中的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器低压侧一般为三角形接法,没有可以接地的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,电力系统可以持续对用户供电1到2小时,并且电容电流比较小(小于10A),不会引起间歇性电弧,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。但随着城市电网的不断扩大及电缆出线的不断增多,系统对地电容电流急剧增加,单相接地后流经故障点的电容电流较大(超过10A)。电弧不易熄灭、容易激发铁磁谐振过电压及产生间隙性弧光接地过电压,可能导致绝缘损坏,使线路跳闸,事故扩大,具体为:

1.单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。

2.由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。

3.产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。

为了减小单相接地故障时的对地电容电流,需要在变压器中性点装设消弧线圈等补偿装置,因此需人为建立一个中性点,以便在中性点接入消弧线圈,减小接地短路断路电流,提高系统供电可靠性。

国内外使用现状

我国的接地变压器通常采用 Z 型接线(或称曲折型接线),为节省投资和变电所空间,通常在接地变压器上增加第三绕组,替代所用变压器,为变电所所用设备供电。根据我国《电抗器》国家标准规定,接地变压器的接地方式可分为直接接地;通过电抗器、电阻及消弧线圈接地。直接接地在我国目前还没有使用,但己有电力研究部门开始这方面的探讨。

国外的接地变压器通常采用或 Z 型连接,用于 10kV 不接地系统,构成了配电网的接地保护,当系统发生接地故障时,接地变压器对正序、负序电流呈现高阻抗性,对零序电流呈现低阻抗性,使接地保护可靠动作。

设备分类

三相接地变压器

此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替站用变,从而节省投资费用。

单相接地变压器

单相接地变压器

单相接地变主要用于有中性点的发电机、Satons变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。

工作特点

(1)零序阻抗低, 以保证零序电流的输出;

(2)励磁阻抗高,以降低空载电流;

(3)空载损耗低,以节省日常运行的能耗。

接线方式

YNyn联结

这种联结方式的变压器一般采用三相三柱式铁心,高压侧的中性点可以联结消弧线圈等实现接地。但是, 当单相接地的零序电流流过高压侧绕组时,所产生的零序磁势不能被二次磁势所平衡,同方向的零序磁通又不能在三柱式铁心内形成回路,从而使得大量的零序磁通只能经过夹件、油和油箱本体而形成闭合回路,从而在油箱及夹件内引起附加损耗,以致形成局部过热,使变压器容量的利用受到限制。

我国电力部门的有关运行规程, 曾对YNyn联结变压器的中性点联结消弧线圈的工作状态, 作过下列规定:

(1)消弧线圈的容量不得超过变压器额定容量的20%;

(2) 流过消弧线圈的零序电流在变压器内所产生的零序压降不得超过额定相电压的10%;

(3)流经消弧线圈的三相总零序电流不大于变压器额定相电流的60%。

上述规定主要是根据零序磁通所造成的局部过热不致超过变压器绕组热点的最高温度限制而决定的。从上述可知,YNyn联结的接地变压器容量远未被利用,另外它的零序电抗值也较大<6> <7> 。

YNd联结

YNd联结变压器与消弧线圈XL相联

这种联结方式的特点是二次侧的三角形联结可提供零序电流的闭合通路,因而零序电抗较小。另外, 由于每个心柱上的一、二次绕组的零序磁势得以平衡, 所以零序漏磁也较小。但是, 当YN联结绕组处于外部时,在油箱等部件内所引起的零序附加损耗仍不能完全避免。当它联结消弧线圈时,其容量的利用仍将受到一定限制。

国外的试验研究表明: 考虑附加损耗、局部过热、绝缘寿命和绕组热点最高温度的限制等因素后,YNd联结的接地变压器允许的工作方式为:

(1)当平时二次满载时,YN侧所接消弧线圈的容量不得超过变压器额定容量的50%;

(2)当平时二次的负载仅为变压器容量的50%,则消弧线圈容量可以等于变压器的额定容量。

尽管这种联结的二次侧可以供电给地区负载或变电所自用电,但由于三角形联结难于同时向动力与照明混合用户供电, 所以它的应用将受到很大限制。

YN ,开口d 联结与消弧线圈XL相联

与YNd联结相类似的是YN,开口d 的联结方式,在开口三角形一侧可接入电阻器或电抗器以调节变压器的零序电抗,接入电阻器还可以抑制网络的铁磁谐振。如采用三相五柱式铁心还可使零序阻抗值大为增加, 甚至有省去一台消弧线圈的可能,但结构复杂,造价增加。另外,二次采用开口三角形结线不能满足供电给地区负载及自用电的需要,因此这种方式采用不多。

ZNyn联结

ZN,yn 联结变压器与消弧线圈XL相联

这种联结方式是接地变压器常用联结方式,由于曲折形结法的同一铁心柱上的上下两半绕组内的零序磁势正好大小相等、方向相反而相互抵消,使得零序漏磁通减到很小, 从而使它的零序电抗值很小,它的容量可以与所联结的消弧线圈的容量相等。目前国内外广泛采用的接地变压器主要是这种联结方式。

由于低压侧采用yn结法,故可以同时供给地区用电或变电所的自用电。低压侧容量常小于高压侧容量,多数情况下,低压侧容量在80-200kVA 的范围内。

尽管高压侧的额定容量可以与联接的消弧线圈容量相等,但Z 形接法将较Y 形接法多绕1.15倍的匝数,所以接地变压器的实际容量应为消弧线圈容量的1.15倍。

工作原理

系统发生单相故障时接地变压器的工作原理图

以常用的ZNyn接线说明,接地变压器在运行过程中,当通过一定大小的零序电流时,流过同一铁心柱上的2个单相绕组的电流方向相反且大小相等,使得零序电流产生的磁势正好相反抵消,从而使零序阻抗也很小。使得接地变压器在发生故障时,中性点可以流过补偿电流。由于有很小的零序阻抗,当零序电流通过时,产生的阻抗压降要尽可能的小,以保证系统的安全。由于接地变压器具有零序阻抗低的特点,所以当 C 相发生单相接地故障时,C 相的对地电流 I 经大地流入中性点,并且被等分为三份流入接地变压器,由于流入接地变压器的三相电流相等,所以中性点 N 的位移不变,三相线电压仍然保持对称。但在制造过程中高压绕组的上下包的匝数和几何尺寸不可能完全相等,使得零序电流产生的磁势不可能正好相反抵消,还是产生了一定的零序阻抗,通常在 6-10Ω左右,相对于星形接线的变压器的零序阻抗 600Ω而言,其优势不言而喻。此外,曲折接地变压器还可以使空载电流和空载损耗尽可能小。同普通星形接线变压器比较,由于曲折接线变压器的每相铁芯是由2个铁心柱的绕组组成,结合其向量图可知,与普通星形接线变压器比较,当电压相同时要多绕 1.16 倍。中性点电阻接地方式下城市配电网在单相接地时,零序阻抗和正序阻抗的幅值相差很大。三相正、负序电流流过时,接地变压器的每一铁芯柱上的磁势是该铁芯柱上分属不同相的两绕组磁势的相量和。三个铁芯柱上的磁势是一组三相平衡量,相位差 120°,产生的磁通可在三个铁芯柱上互相形成回路,磁路磁阻小,磁通量大,感应电势大,呈现很大的正序、负序阻抗;因此,接地变压器具有正、负序阻抗大而零序阻抗小的特点。

主要技术参数

为适应配电网采用消弧线圈接地补偿的需要,同时也能满足变电站站用动力与照明负载的需要,选用 Z 型接线连接的变压器,需要合理设置接地变压器的主要参数。

(1)额定容量

接地变压器一次侧容量与需要与消弧线圈容量相配套。依据现有消弧线圈的容量规格,建议把接地变压器容量设为消弧线圈容量的1.05-1.15 倍。如1台200kVA 消弧线圈所配用的接地变压器容量为215kVA。

(2)中性点补偿电流

单相故障时流过变压器中性点的总电流:

上式中:U 为配电网线电压(V);Zx为消弧线圈的阻抗(Ω);Zd为接地变压器一次零序阻抗(Ω/相);Zs为系统阻抗(Ω);中性点补偿电流的持续时间应与消弧线圈的持续工作时间相同,按规定为2小时。

(3)零序阻抗

零序阻抗是接地变压器的重要参数,对于继电保护限制单相接地短路电流及抑制过电压等都有重要影响。对于无二级线圈的曲折形(Z 型)以及星性/开口三角形联结的接地变压器只有1个阻抗,即零序阻抗,这样制造部门能满足电力部门的要求。

(4)损耗

损耗是接地变压器的1个重要性能参数,对于带有二次线圈的接地变压器,其空载损耗可以做到与同容量的双绕组变压器相同。对于负载损耗,二次侧满载运行时,由于一次侧负荷较轻,其负载损耗小于与二次侧同容量双绕组变压器的负载损耗。

(5)温升

按国标对接地变压器的温升有如下规定:

1)额定持续电流下的温升应符合一般电力变压器干式变压器国标中的规定,但主要适用于二次侧经常带负荷的接地变压器;

2)对短时负载电流的持续时间在10s以内时(这种情况主要发生在中性点与电阻联结时),其温升应符合国标电力变压器中对短路条件下的温升限值的规定;

3)接地变压器与消弧线圈一起运行时其温升应符合对消弧线圈温升的规定:

对于持续流过额定电流的绕组温度为80K,主要适用于星性/开口三角形联结的接地变压器;

对于额定电流的最大流通时间规定为2h的绕组,规定温度为100K。这种情况符合多数接地变压器的工作条件;

对于最大流通时间规定为30min的绕组,规定温度为120K。

上述规定的出发点, 是根据在最严重的条件下绕组热点的最高温度不超过140℃ ~ 160℃,以保证绝缘的安全运行和不至于严重危及绝缘寿命而规定。

电气百科:浮头式换热器

浮头式换热器,两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。浮头由浮动管板、钩圈和浮头端盖组成,是可拆连接,管束可从壳体内抽出。管束与壳体的热变形互不约束,因而不会产生热应力。其优点是管间与管内清洗方便,不会产生热应力;但其结构复杂,造价比固定管板式换热器高,设备笨重,材料消耗量大,且浮头端小盖在操作中无法检查,制造时对密封要求较高。适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。

简介

浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。

结构

在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰

浮头式换热器结构

为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型和梯型凹槽及分程凹槽及其垫片,该结构必要时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应变更加大相关零部件的尺寸;另配置一无外力辅助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。

设计要求

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、

浮头式换热器

新材料的换热器不断涌现。为了适应发展的需要,中国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求:

(1) 合理地实现所规定的工艺条件;

(2) 结构安全可靠;

(3) 便于制造、安装、操作和维修;

(4) 经济上合理。

浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两种介质的温差较大时,管束和壳体之间不产生温差应力。浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。(也可设计成不可拆的)。这样为检修、清洗提供了方便。但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。因此在安装时要特别注意其密封。

浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。

在设计时必须考虑浮头管板的外径Do。该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。以便于进行检修、清洗。浮头盖在管束装入后才能进行装配,所以在设计中应考虑保证浮头盖在装配时的必要空间。

钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。随着浮头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。

钩圈一般都为对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。

浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验,不断促进了自身的发展。故迄今为止在各种换热器中仍占主导地位。

优缺点

优点

(1)管束可以抽出,以方便清洗管、壳程;

浮头式换热器

(2)介质间温差不受限制;

(3)可在高温、高压下工作,一般温度小于等于450度,压力小于等于6.4兆帕;

(4)可用于结垢比较严重的场合;

(5)可用于管程易腐蚀场合。<1>

缺点

(1)小浮头易发生内漏;

(2)金属材料耗量大,成本高20%;

(3)结构复杂

制造工艺

选取换热设备的制造材料及牌号,进行材料的化学成分检验,机械性能合格后,对钢板进行矫形,方法包括手工矫形,机械矫形及火焰矫形。

备料--划线--切割--边缘加工(探伤)--成型--组对--焊接--焊接质量检验--组装焊接--压力试验

质量检验

化工设备不仅在制造之前对原材料进行检验,而且在制造过程中要随时进行检查。

特点

浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。

故障及对策

在生产过程中,由于浮头式换热器的管板受水分冲刷、气蚀和微量化

学介质的腐蚀,管板焊缝处经常出现渗漏,导致水和化工材料出现混合,生产工艺温度难以控制,致使生成其它产品,严重影响产品质量,降低产品等级。冷凝器管板焊缝渗漏后,企业通常利用传统补焊的方法进行修复,管板内部易产生内应力,且难以消除,致使其它换热器出现渗漏,企业通过打压,检验设备修复情况,反复补焊、实验,2~4人需要几天时间才能修复完成,使用几个月后管板焊缝再次出现腐蚀,给企业带来人力、物力、财力的浪费,生产成本的增加。通过高分子复合材料的耐腐蚀性和抗冲刷性,通过提前对新换热器的保护,这样不仅有效治理了新换热器存在的焊缝和砂眼问题,更避免了使用后化学物质腐蚀换热器金属表面和焊接点,在以后的定期维修时,也可以涂抹高分子复合材料来保护裸露的金属;即使使用后出现了渗漏现象,也可以通过技术及时修复,避免了长时间的堆焊维修影响生产。正是由于此种精细化的管理,才使得换热器渗漏问题出现的概率大大降低,不仅降低了换热器的设备采购成本,更保证了产品质量、生产时间,提高了产品竞争力。

电气百科:容重

容重也称为重度。有两种理解:1、指单位容积内物体的重量,常用于工程上指一立方的重量,如单位体积土体的重量。2、表示物体因受地球引力而表现出的重力特性,对于均质流体,指作用在单位体积上的重力。其单位是:牛/立方米或者千牛/立方米。

术语讲解

释义

干容重就是指不含水分状态下的容重。 一般用于表示土的压实效果,干容重越大表示压实效果越好。

最大干容重是在实验室中得到的最密实状态下的干容重。

单位体积所具有的质量称为密度,公式ρ=m/V(kg/m3);单位体积所具有的重量称为容重,公式γ=G/V(N/m3),容重等于密度和重力加速度的乘积,即γ=ρg。

单位

容重=密度*g=kg/m3 *g,单位是牛/立方米(N/m3)

概念区分

前言

“容重”与“密度”的概念在理论上不尽相同:

区分1

容重一般是工程上用的一立方米的重量,即单位容积内物体的重量。而密度应用范围很广,即“单位体积物质的质量”,液体、固体、气体都可以用。

区分2

容重还表示物体由于受地球引力而表现出的重力特性,对于均质流体,容重也指作用在单位体积上的重力。教科书中多用希腊字母γ(读音gamma)表示。在国际单位制中,其单位是:千牛/立方米(kN/m3) (如空气在0摄氏度、绝对标准指标下,密度为1.293千克/立方米,即1.293*10-3克/立方厘米,对应该状态下空气的容重为12.70*10-6牛顿/立方厘米)。

区分3

土壤容重:田间自然垒结状态下单位容积土体(包括土粒和孔隙)的质量或重量称为土壤容重 土壤容重是土壤肥瘦和耕作质量的重要指标,土壤容重高说明土壤紧实,孔隙数量少,土壤的水分、空气、热量状况较差。

土壤容重研究

通过人工改变土壤颗粒级配,配制典型砂壤、中壤、黏壤,并设置不同容重水平,用土柱积水入渗模拟了土壤容重对其入渗能力的影响,为土壤改良和促进天然降水转化利用提供理论依据。结果表明,容重对土壤入渗能力有较大影响。试验土壤入渗能力随容重增大递减,3种典型土壤稳定入渗速率与容重均呈对数负相关,砂壤120min累积入渗量与容重呈幂函数负相关,中壤、黏壤则呈线性负相关。考斯加科夫入渗模型中,表征初始入渗速率的参数随容重增大递减,表征入渗能力衰减速度的参数则随容重增大递增,说明土壤初始入渗能力随容重增大递减,入渗能力衰减速度随容重增大递增。

对青藏铁路沿线具有代表性的两种土:砂质粘土和轻亚粘土进行了室内冻融试验研究。试验在开放系统、不同初始干容重、含水量及温度条件下进行,水分由下向上补给。试验结果表明:经过多次冻融循环以后,土体的干容重趋于某一定值。这一定值与土体的初始干容重无关,而与土体的种类有关。本试验结果中砂质粘土稳定干容重为1.55 gcm-3,轻亚粘土为1.78 gcm-3。另外,发生冻融循环后的土体含水量比初始含水量大,而且经历冻融变化的部分增加的含水量要比保持融化状态部分增加的含水量要大。

在控制水分、肥料的条件下,用盆栽试验研究土壤容重对玉米苗期生长的影响。结果表明,土壤容重对玉米苗期生长影响显著.随着土壤容重的变化,玉米根系及地上部都随之发生一定的变化。在一定范围内,随着土壤容重的增加,玉米的根长逐渐变短,而其直径则逐渐变粗。

电气百科:菲涅尔透镜

菲涅尔透镜 (Fresnel lens) ,又名螺纹透镜,多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是根据光的干涉及扰射以及相对灵敏度和接收角度要求来设计的。

基本原理

由来

菲涅尔透镜应用

菲涅尔透镜是由法国物理学家奥古斯汀.菲涅尔(Augustin.Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统——灯塔透镜。

通过将数个独立的截面安装在一个框架上从而制作出更轻更薄的透镜,这一想法常被认为是由布封伯爵提出的。孔多塞(1743-1794)提议用单片薄玻璃来研磨出这样的透镜。而法国物理学家兼工程师菲涅耳亦对这种透镜在灯塔上的应用寄予厚望。根据史密森学会的描述,1823年,第一枚菲涅尔透镜被用在了吉伦特河口的哥杜昂灯塔(Phare de Cordouan)上;透过它发射的光线可以在20英里(32千米)以外看到。苏格兰物理学家大卫·布儒斯特爵士被看作是促使英国在灯塔中使用这种透镜的推动者。

基本原理

其工作原理十分简单:假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。

另外一种理解就是,透镜连续表面部分“坍陷”到一个平面上。从剖面看,其表面由一系列锯齿型凹槽组成,中心部分是椭圆型弧线。每个凹槽都与相邻凹槽之间角度不同,但都将光线集中一处,形成中心焦点,也就是透镜的焦点。每个凹槽都可以看做一个独立的小透镜,把光线调整成平行光或聚光。这种透镜还能够消除部分球形像差。

菲涅尔透镜v.s.普通凸透镜

特性

使用普通的凸透镜,会出现边角变暗、模糊的现象,这是因为光的折射只发生在介质的交界面,凸透镜片较厚,光在玻璃中直线传播的部分会使得光线衰减。如果可以去掉直线传播的部分,只保留发生折射的曲面,便能省下大量材料同时达到相同的聚光效果。菲涅耳透镜就是采用这种原理的。菲涅尔透镜看上去像一片有无数多个同心圆纹路(即菲涅耳带)的玻璃,却能达到凸透镜的效果,如果投射光源是平行光,汇聚投射后能够保持图像各处亮度的一致。

功能

菲涅尔透镜在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如幻灯机、薄膜放大镜、红外探测器等。

菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。

菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反射)在PIR上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变

菲涅尔透镜

化的形式在PIR上产生变化热释红外信号。

菲涅尔透镜,简单的说就是在透镜的一侧有等距的齿纹,通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用。传统的打磨光学器材的带通光学滤镜造价昂贵。菲涅尔透镜可以极大的降低成本。

典型的例子就是PIR。PIR广泛的用在警报器上。如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。这就是菲涅尔透镜。小帽子的内部都刻上了齿纹。这种菲涅尔透镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。

菲涅耳透镜可以把透过窄带干涉滤光镜的光聚焦在硅光电二级探测器的光敏面上,菲涅尔透镜不能用任何有机溶液(如酒精等)擦拭,除尘时可先用蒸馏水或普通净水冲洗,再用脱脂棉擦拭。

现在的相机对焦屏都是磨砂毛玻璃菲涅尔透镜,其优点是明亮和亮度均匀。对焦不准时,在对焦屏上的成像是不清晰的。为了配合更精确地对焦,一般在对焦屏中央装有裂像和微棱环装置。当对焦不准时,被摄体在对焦屏中央的像是分裂成两个图像,当两个分裂的图像合二为一时,表明对焦准确了。AF单反机的标准对焦屏一般不设有裂像装置,而是刻有一个小矩形框来表示AF区域,有些对

菲涅尔透镜

焦屏上还刻有局部测光或点测光区域。早期AF单反机在光线较暗环境中对焦时,往往很难看见对焦框,就难以判断相机是以哪一点来作为对焦点,新一代单反机对焦屏上的对焦点会发光,或者有对焦声音提示,便于在复杂环境中确认对焦。不同类型的对焦屏有不同的用途、拍摄人像可能用如裂像对焦屏更好,带横竖线或刻度的对焦屏适用于建筑物摄影和文件翻拍;中间部分没有裂像而只有微棱的对焦屏适用于小光圈镜头,它不会有裂像一边亮一边黑的缺点。不少单反相机焦屏可由用户自己更换。又称螺纹透镜。

分类

设计上来划分

1.1正菲涅尔透镜:

光线从一侧进入,经过菲涅尔透镜在另一侧出来聚焦成一点或以平行光射出。焦点在光线的另一侧,并且是有限共轭。

这类透镜通常设计为准直镜(如投影用菲涅尔透镜,放大镜)以及聚光镜(如太阳能用聚光聚热用菲涅尔透镜。

2.2负菲涅尔透镜:

和正焦菲涅尔透镜刚好相反,焦点和光线在同一侧,通常在其表面进行涂层,作为第一反射面使用。

从结构上划分

圆形菲涅尔透镜

菲涅尔透镜阵列,

菲涅尔透镜应用

柱状菲涅尔透镜,

线性菲涅尔透镜,

衍射菲涅尔透镜,

菲涅尔反射透镜,

菲涅尔光束分离器和菲涅尔棱镜。

应用领域

菲涅尔透镜现阶段主要应用领域包括投影以及太阳能光伏领域。因为菲涅尔透镜射出的光线边缘较为柔和,故它常用在染色灯上。在透镜前方的支架上放置一块有颜色的塑料膜给光线染色,也可放置金属纱网或磨砂塑料使光线弥散。许多含有菲涅尔透镜的设备都允许灯在焦点前后移动,以放大或缩小光束的大小,其非常适合在透镜式投影仪、背投电视、幻灯机以及准直器上使用,不仅因为透过它的光线比透过普通透镜的亮度高,也由于透过它的整束光线在各个部位的亮度都相对一致。

在太阳能光伏领域,菲涅尔主要作为聚光光伏系统中的聚光部件,将光线从相对较大的区域面积转换成相对小的面积上。廉价的菲涅尔透镜一般由透明塑料压铸或模塑而成,其尺寸可以在做得比玻璃大的同时更轻、更经济,因此,大型的菲涅尔透镜也被广泛用在太阳灶聚集阳光或是太阳能热水器上。除此之外,菲涅尔透镜也广泛应用在汽车前灯、汽车尾灯以及倒车灯上。它能使大灯最初由凹面镜反射出来的平行光向下倾斜,因此,菲涅尔透镜也用于校正一些视觉障碍,比如斜视。

菲涅尔透镜是一种应用十分广泛的光学元件,其设计和制造设计到多个技术领域,包括光学工程,高分子材料工程,CNC机械加工,金刚石车削工艺,镀镍工艺;模压、注塑、浇铸等制造工艺。菲涅尔透镜应用于多个领域,包括:

投影显示:菲涅尔投影电视,背投菲涅尔屏幕,高射投影仪,准直器;

聚光聚能:太阳能用菲涅尔透镜,摄影用菲涅尔聚光灯,菲涅尔放大镜;

航空航海:灯塔用菲涅尔透镜,菲涅尔飞行模拟;

科技研究:激光检测系统等;

红外探测:无源移动探测器;

照明光学:汽车头灯,交通标志,光学着陆系统。

智能家居:安防系统探测器等

菲涅尔透镜太阳能

国际上有人研制大型菲涅尔透镜,试图用于制作太阳能聚光集热器。菲涅尔透镜是平面化的聚光镜,重量轻,价格比较低,也有点聚焦和线聚焦之分,一般由有机玻璃或其它透明塑料制成,也有用玻璃制作的,主要用于聚光太阳电池发电系统。

我国从70年代直至90年代,对用于太阳能装置的菲涅尔透镜开展了研制。有人采用模压方法加工大面积的柔性透明塑料菲涅尔透镜,也有人采用组合成型刀具加工直径1.5m的点聚焦菲涅尔透镜,结果都不大理想。近来,有人采用模压方法加工线性玻璃菲涅尔透镜,但精度不够,尚需提高。 还有两种利用全反射原理设计的新型太阳能聚光器,虽然尚未获得实际应用,但具有一定启发性。一种是光导纤维聚光器,它由光导纤维透镜和与之相连的光导纤维组成,阳光通过光纤透镜聚焦后由光纤传至使 用处。另一种是荧光聚光器,它实际上是一种添加荧光色素的透明板(一般为有机玻璃),可吸收太阳光中与荧光吸收带波长一致的部分,然后以比吸收带波长更长的发射带波长放出荧光。放出的荧光由于板和周围介质的差异,而在板内以全反射的方式导向平板的边缘面,其聚光比取决于平板面积和边缘面积之比,很容易 达到10一100,这种平板对不同方向的入射光都能吸收,也能吸收散射光,不需要跟踪太阳。

电气百科:盾构机

盾构机是一种使用盾构法的隧道掘进机。盾构的施工法是掘进机在掘进的同时构建(铺设)隧道之“盾”(指支撑性管片),它区别于 敞开式施工法。

国际上,广义盾构机也可以用于岩石地层,只是区别于 敞开式(非盾构法) 隧道掘进机。而在我国,习惯上将用于软土地层的隧道掘进机称为(狭义)盾构机,将用于岩石地层的称为(狭义)TBM。

盾构机根据工作原理一般分为手掘式盾构,挤压式盾构,半机械式盾构(局部气压、全局气压),机械式盾构(开胸式切削盾构,气压式盾构,泥水加压盾构,土压平衡盾构,混合型盾构,异型盾构)。

含义

盾构机是一种使用盾构法的隧道掘进机。盾构的施工法是掘进机在掘进的同时构建(铺设)隧道之“盾”(指支撑性管片),它区别于敞开式施工法。 国际上,广义盾构机也可以用于岩石地层,只是区别于 敞开式(非盾构法)的隧道掘进机。而在我国,习惯上将用于软土地层的隧道掘进机称为(狭义)盾构机,将用于岩石地层的称为(狭义)TBM。

(全断面)隧道掘进机里一部分采用盾构法,一部分采用敞开式施工法,例如,由中国铁建重工自主研制的全断面双护盾岩石隧道掘进机(TBM) 自带双护盾,不需要构建(铺设)隧道之“盾”即不需要铺设管片,而是集开挖、支护、出渣于一体,可以实现隧道的一次成型。

应用原理

用盾构法的机械进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响地面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。

盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时支撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。

发展历史

据了解,采用盾构法施工的掘进量占京城地铁施工总量的45%,目前共有17台盾构机为地铁建设效力。虽然盾构机成本高昂,但可将地铁暗挖功效提高8到10倍,而且在施工过程中,地面上不用大面积拆迁,不阻断交通,施工无噪音,地面不沉降,不影响居民的正常生活。不过,大型盾构机技术附加值高、制造工艺复杂,国际上只有欧美和日本的几家企业能够研制生产。

盾构机问世至今已有近180年的历史,其始于英国,发展于日本、德国。近30年来,通过对土压平衡式、泥水式盾构机中的关键技术,如盾构机的有效密封,确保开挖面的稳定、控制地表隆起及塌陷在规定范围之内,刀具的使用寿命以及在密封条件下的刀具更换,对一些恶劣地质如高水压条件的处理技术等方面的探索和研究解决,使盾构机有了很快的发展。盾构机尤其是土压平衡式和泥水式盾构机在日本由于经济的快速发展及实际工程的需要发展很快。德国的盾构机技术也有独到之处,尤其是在地下施工过程中,保证密封的前提以及高达0.3MPa气压的情况下更换刀盘上的刀具,从而提高盾构机的一次掘进长度。德国还开发了在密封条件下,从大直径刀盘内侧常压空间内更换被磨损的刀具。

盾构机的选型原则是因地制宜,尽量提高机械化程度,减少对环境的影响。

参与沈阳地铁工作的盾构机名为开拓者号,总长为64.7米,盾构部分9.08米,重量为420吨,其工作误差不超过几毫米。

价格:德国进口的盾构机大概需要人民币5000万元,日本进口的盾构机大概需要人民币3000万元以上,国产的盾构机价格一般在2500-5000万左右。

目前国内具有自主知识产权的国产盾构机是上海隧道工程股份有限公司研制的国产“863”系列盾构机。

2007年7月,北方重工集团董事长耿洪臣与法国NFM公司原股东正式签署了股权转让协议,以绝对控股方式成功结束了历时两年的并购谈判,使北方重工拥有了世界上最先进的全系列隧道盾构机的核心技术和知名品牌。

2015年11月14日,由中国铁建重工集团和中铁十六局集团合作研发的中国国产首台铁路大直径盾构机在长沙下线,拥有完全自主知识产权,打破了国外近一个世纪的技术垄断,将加速中国快速城市化和大铁路网建设的步伐。本次下线的大直径盾构机开挖直径8.8米,总长100米,每台售价比进口同类产品便宜2000万元以上,性价比高,可靠性好,能够适用于多种复杂地层,下线后将服务于广珠城际轨道交通线。

2018年3月13日,由中国自主研发的出口海外超大直径盾构机在中交天和机械设备制造有限公司总装车间下线,这台直径达12.12米的超大直径泥水气压平衡盾构机,将用于中国在海外最大的盾构公路隧道项目——孟加拉国卡纳普里河底隧道工程,这也是南亚地区投入使用的最大直径盾构机,终结欧美垄断。

分类

盾构机,全名叫盾构隧道掘进机,是一种隧道掘进的专用工程机械,现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,涉及地质、土木、机械、力学、液压、电气、控制、测量等多门学科技术,而且要按照不同的地质进行“量体裁衣”式的设计制造,可靠性要求极高。盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。

半敞开式

手掘式及半机械式盾构均为半敞开式开挖,这种方法适于地地质条件较好,开挖面在掘进中能维持稳定或在有辅助措施是能维持稳定的情况,其开挖一般是从顶部开始逐层向下挖掘。若土层较差,还可借用千斤顶加撑板对开挖面进行临时支撑。采用敞开式开挖,处理孤立障碍物、纠偏、超挖均为其它方式容易。为尽量减少对地层的扰动,要适当控制超挖量与暴露时间。

机械切削式

指与盾构直径相仿的全断面旋转切削刀盘开挖方式。根据地质条件的好坏,大刀盘可分为刀架间无封板及有封板两种。刀架间无封板适用于土质较好的条件。大刀盘开挖方式,在弯道施工或纠偏是不如敞开式开挖便于超挖。此外,清除障碍物也不如敞开式开挖。使用大刀盘的盾构,机械构造复杂,消耗动力较大。

网格式

采用网格式开挖,开挖面由网格梁与格板分成许多格子。开挖面的支撑作用是由土的粘聚力和网格厚度范围内的阻力而产生的。当盾构推进时,土体就从格子里挤出来。根据土的性质,调节网格的开孔面积。采用网格式开挖时,在所有千斤顶缩回后,会产生较大的盾构后退现象,导致地表沉降,因此,在施工务必采取有效措施,防止盾构后退。

挤压式

全挤压式和局部挤压式开挖,由于不出土或只部分出土,对地层有较大的扰动,在施工轴线时,应尽量避开地面建筑物。局部挤压式施工时,要精心控制出土量,以减少和控制地表变形。全挤压式施工时,盾构把四周一定范围内的土体挤密实。

电气百科:混凝土输送泵车


混凝土输送泵车是利用压力将混凝土沿管道连续输送的机械。由泵体和输送管组成。按结构形式分为活塞式、挤压式、水压隔膜式。泵体装在汽车底盘上,再装备可伸缩或屈折的布料杆,就组成泵车。

基本信息

混凝土泵车是是在汽车底盘上配装搅拌锥简及其旋转传动系统等构成,其输送作业方式有两种:1) 长距离(一般超过15km)输送时,装八干混料,待到达使用地点前10~15分钟时,启动搅拌锥筒旋转(转速为8~12r/min),并由车上配备的水箱向锥筒内定量加水,将干混合料搅拌成混凝土,直至施工地点再反转将料卸出,2) 在10km以内输进时,则只作为运输机械使用,即将搅拌站拌好的混凝土装八铁简,在运输过程中使锥筒低速旋转(2~4r/min),防止混凝土产生分层离析现象,直到施工地点后再反转锥筒将料卸出。

这种机械虽然可以搅拌混凝土,但目搅拌时间相对较长,考虑其使用经济性,不宜充作搅拌机使用。

用途

混凝土输送泵车也称臂架式混凝土泵车,是将混凝土泵和液压折叠式臂架都安装在汽车或拖挂车底盘上,并沿臂架铺设输送管道,最终通过末端软管输出混凝土的输送机械。由于臂架具有变幅、折叠和回转功能,施工人员可以在臂架所能及的范围内布料。

混凝土输送泵车可以一次同时完成现场混凝土的输送和布料作业,具有泵送性能好、布料范围大、机动灵活和转移方便等特点,特别适用于混凝土浇筑需求量大、超大体积及超厚基础混凝土的一次浇筑和质量要求高的工程。在国家重点建设项目的混凝土施工中都采用了混凝土输送泵车泵送技术,其使用范围已经遍及水利、地铁、桥梁、大型基础、高层建筑等工程中。近年来混凝土泵车已经成为泵送混凝土施工机械的首选机型。

分类

混凝土泵车按泵送机构型式,基本上分为两大类,一类是挤压式,其压力和排量较小,另一类是活塞式,其压力和排量较大。

挤压式混凝土泵车

挤压式混凝土泵的工作原理是利用滚轮滚动时挤压橡胶管,使橡胶管具有吸人和输出混凝土能力,从而达到输送目的。图6—25为挤压式混凝土泵的构造图。驱动轴8带动滚轮架2和三个滚轮4旋转,不断地挤压橡胶软管5。真空吸气口6与真空泵连接。工作时,真空泵不断抽气,造成泵体I内形成负压。支承辊子3的作用是扶持协助挤压后的软管迅速复原,以提高混凝土的吸人性能。若将此泵置于汽车底盘上,并设置臂架式布料杆、底架、支腿、料斗、水洗机构等,即构成一台挤压式混凝土泵车。其结构如图6—26所示。一般混凝土输出压力为1.8MPa,排出量达50m3/h,臂架最大高度为16m。

活塞式混凝土泵车

活塞式混凝土泵是利用油缸驱动混凝土输送缸的活塞往复运动,借以吸人或压送混凝土而实现混凝土的输送。除此以外,其余均与挤压式混凝土泵车的相同。由于活塞式混凝土泵车的使用性能远比挤压式混凝土泵车的优良,因此获得了广泛的应用。但是活塞式混凝土泵车的结构复杂,成本较高。

主要结构

混凝土泵

图1

所示为混凝土布料泵车的结构,它主要由专用汽车底盘、混凝土泵、搅拌器、隔筛、布料装置、混凝土分配阀和支腿等组成。

混凝土分配阀

混凝土分配阀是混凝土泵车的关键部分,它应满足平稳的泵送、快速切换;有效的密封,防止混凝土溢出;抽吸阻力小等功能要求。

常用的混凝土分配阀有闸板阀、管阀及转阀三种。

闸板阀工作原理如图2所示。在料斗出料口和泵的出料口分别有一块闸板,两闸板的位置由具有液压连锁的两液压油缸控制。图中混凝土缸1处于排料状态,闸板2处于左位,缸1的进料口3被堵住,而此时缸9的进料口8打开吸料。闸板7处于右位,缸1的排料口打开送料,缸9的排料口关闭。缸1排料完毕时,通过电液控制使两液压油缸同时动作,闸板2移到右位,闸板7移到左位,缸1开始吸料,缸9开始排料,从而完成一个工作循环。

图2

在瞬间分离部位由泵送压力和抽吸压力密封。当滑阀的磨损逐渐加剧时,这个压力也起到自动调整阀板的作用。闸板阀适用于各种配方的混凝土。

管阀既是混凝土分配阀,又是混凝土输送管道的组成部分。其形式主要有S形分配阀和裙阀等。

裙阀如图3所示,它安装在料斗内。由于其结构外形像华丽的裙子,故而得名。正是由于这种外形,使得这种闸阀在来回摆动时,依次与混凝土缸1和混凝土缸4接合而压送混凝土。能达到瞬间平衡,而且在整个磨损范围内部能自动调整位置。由于混凝土在裙阀摆动时受到挤压,则反作用到裙阀上将合成一轴向挤压力,从而实现了可靠的密封。这种闸阀除了用于泵送混凝土外,还能输送其他稀质流体。

图3

混凝土布料杆

混凝土布料杆是在一定范围内输送混凝土料的可回转、伸缩、折叠的臂架和输送管道。常用的布料杆有3节、4节或5节的(见图1),可液压折叠,一般做成箱形臂架结构。根据折叠方式的不同,一般可分为卷合折叠和Z形折叠或两种折叠方式的混合式,见图14。卷合折叠式中,每一节杆从外向内卷合。与此相反,在z形折叠中,每根杆像英制比例尺一样折合或相互重叠折合,这样可使它伸展的空间限制在5m高度之内,以满足隧道施工或楼房内施工的要求。Z形折叠的伸展时间约需5min,卷合折叠约需8min。

布料杆可作为单独的结构件安装在压稳的框架上单独与混凝土泵配合工作,但一般情况下是安装在2桥至6桥的汽车底盘上。布料杆伸出作业时,牵引车的重量起到附加压重的作用,从而提高了工作稳定性。目安装在汽车混凝土泵车上最大的布料杆可伸到60m以上高度、50m以上幅度。 <2>

图4

使用注意事项

1. 在开机以前

(1)检查发动机机油,冷却水、离合器液、液压油、清洗水是否足够。混凝土泵的操纵杆都应放在中位。遵守汽车驾驶操作规程。·

(2)混凝土泵车到达施工现场后,应停放在水平的密实地面上。不准停放在坡地上,防止自动滑行事故的发生。

(3)泵车的前、后支腿下部应垫以厚木板,使每条支腿均匀受力和降低对地的压强。停稳后,使泵车的两前轮着地,以减轻前支腿油缸的负荷,同时增加了泵车的稳定性。

(4)垂直泵送混凝土时,泵车出口至垂直上升管之间须铺以10m长以上的水平直管。

(5)泵车布料杆一般采用三节折叠式臂架。在运输状态时,把三节臂架曲折收缩回来。在工地短距离移动时,必须把第三节臂架收缩回来,第一、第二节臂架移向泵车后方并降到水平位置,锁住布料杆的回转支承装置,容许泵车以低于10km/h的速度慢速移动,以确保泵车移动时的稳定性。当然,最好是把臂架全部收缩回来再移动。

(6)确认混凝土符合泵送要求。一般要求混凝土的坍落度为5~23cm。采用Φ100mm输送管时,骨料最大粒径不得超过25mm;采用Φ125mm输送管时,骨料最大粒径不得超过40mm。·

(7)风速在10m/s(5级风)以上时,禁止使用布料杆。

2. 开机以后

(1)在泵送混凝土前,先泵水60~90kg,再泵送砂浆0.5m3。砂浆配合比是根据泵送的管长来确定,当管长小于150m时,水泥与砂之比为1:2,管长超过150m时,水泥与砂之比为1:1,真砂浆接近泵完时即可泵送混凝土。

(2)当混凝土泵的活塞行程可调时,泵送坍落度较大(9cm以上)采用长行程,反之采用短行程。

(3)泵送混凝土坍落度的波动不得太大,其变化范围控制在15%以内。

(4)泵送混凝土一旦开始,应连续进行。遇到混凝土暂时供应不上时,!可减慢泵送速度来保持其连续性。泵送暂时中断时,将受料斗里的混凝土每隔4~5min搅拌叶片转3~4转,开动混凝土泵正-反行程3~4次,以防止混凝土离析,初凝和堵塞。这时受料斗中的混凝土料面应保持一定高度,否则将造成吸空和外喷。当泵送中断时间超过30min,必须把残留在管道中的混凝土清理干净。

(5)在正常泵送过程中,有时出现油压表指示压力上升过高和输送管路振动现象,这往往是输送管道堵塞的征兆,可先采用上述正-反行程来排除,也可用木锤敲打锥形管、弯管等容易产生堵塞的部位来排除。如这些办法都不能排除堵塞,应及时拆开输送管,清除堵在管内的混凝土。

(6)在连续泵送混凝土时,应每隔2小时更换一次水洗槽坚的脏水,并检查一下混凝土泵活塞的行程有无变化。如行程有变化即进行调整。 ·

(7)在连续泵送过程中,受料斗中的混凝土料面应始终保持在搅拌轴的上面(约为受料斗高度的

),防止混凝土泵吸空。

(8)如遇混凝土坍落度过低,不准在受料斗加水搅拌。应在搅拌车加水泥砂浆(其水灰比与所泵混凝土相同),经搅拌均匀后卸入泵车的受料斗。 ·

(9)不许把泵车布料杆当作起重机吊臂使用,以及在布料杆上吊挂任何重物。 ·

(10)泵送接近结束时,要调小混凝土缸的行程,减慢泵送速度,以减小残留在混凝土缸内的混凝土量。

3. 停机以后

(1)每次泵送混凝土工作结束后,;需要立即把残留在混凝土缸和管道中的混凝土清理和冲洗干净。

(2)当采用空气清洗时,必须严格按操作规程进行。操作人员必须离开到管端5m远的地方,切勿靠近,以免气流喷出伤人。

(3)在冬季,应把泵车上所有的水放尽,以免冻裂机件.

(4)在进行班后保养作业时,如紧固松动的零件,对传动零部件进行注油润滑,添加液压油等,·应先确认发动机停止运转,加压油箱的压力确已释放,才可进行。

电气百科,工业网址大全,电的世界我最懂。

2024-08-30

后面没有了,返回>>电动车百科